Modularization of XHTML in XML Schema Modularization of XHTML™ in XML Schema

W3C
Modularization of XHTML™ in XML Schema
W3C Working Draft 9 December 2002

This version:
[http:/fiwww.w3.0rg/TR/2002/WD-xhtml-m12n-schema-20021209|
Latest version:
|http://www.w3.0rg/TR/xhtml-m12n-schema]
Previous version:
[http:/fiwww.w3.0rg/TR/2002/WD-xhtml-m12n-schema-20020815|
Diff-marked version:
xhtml-m12n-schema-diff.html
Editors:
Daniel Austin, W. W. Grainger, Inc.
Shane McCarron, Applied Testing and Technology, Inc.
Masayasu Ishikawa, W3C

This document is also available in these non-normative formats:|Single XHTML file][p.1] ,
PostScript version, PDF version, ZIP archive, and Gzip’d TAR archive.

[Copyright| ©2002 W3C|® (MIT], [[INRIA] [Keio), All Rights Reserved. W3C [liability} frademark]
[document use|and [software licensing|rules apply.

Abstract

This document describes a methodology for the modularization of XHTML using XML Schema.
Modularization of XHTML allows document authors to modify and extend XHTML in a
conformant way.

Status of This Document

This section describes the status of this document at the time of its publication. Other
documents may supersede this document. The latest status of this document series is
maintained at the W3C.

This is the [Last Call Working Draft|of "Modularization of XHTML in XML Schema" for review by
members of the W3C and other interested parties in the general public. It is a stand-alone
document to ease its review. After going through Last Call, this document will be integrated into
a new edition of Modularization of XHTML [p.42]]. The Last Call review period
ends 31 January 2003.

http://www.w3.org/
http://www.w3.org/TR/2002/WD-xhtml-m12n-schema-20021209
http://www.w3.org/TR/xhtml-m12n-schema
http://www.w3.org/TR/2002/WD-xhtml-m12n-schema-20020815
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Process-20010719/tr.html#last-call

Quick Table of Contents Modularization of XHTML in XML Schema

Publication as a Working Draft does not imply endorsement by the W3C Membership. This is a
draft document and may be updated, replaced or obsoleted by other documents at any time. It is
inappropriate to cite this document as other than "work in progress". A list of current W3C |
[Recommendations|and other technical documents can be found at http://www.w3.0rg/TR.

Patent disclosures relevant to this specification may be found on the Working Group’s public
[patent disclosure pagel

Please send review comments to www-html-editor@w3.org (archive). Public discussion on
XHTML takes place on the mailing list www-html@w3.org (archive).

This document has been produced by the W3C HTML Working Group| (members only) as part of
the [HTML Activityl The goals of the HTML Working Group are discussed in the HTML Working|

Group charter

Quick Table of Contents

2 ISchema Modularlzatlon Frameworkl Y ¢
3.XHTML Schema Modules| e
B.Changes a3
C. IAcknowIedgementsl . R 5
D. XHTML Schema Module Implementatlonsl e ¥ £

Full Table of Contents
1. [Introduction]

1.1.|Purpose of this document]
1.2.[Why Modularize?|

1.3.
1.4.[Requirements|

2.[Schema Modularization Framework|

2.1.|How Schema Modularization Works|
2.1.1.IDTDs and XML Schema| .
2.1.2.[Document Data Structures|
2.1.3.|Understanding XHTML Modularlzatlonl
2.1.4.Mapping DTDs onto Schema] .

2.2.|Framework Conventions|
2.2.1.|Modularized Schemas|
2.2.2.[Module Naming| .
2.2.3.[Module Hierarchy Structure]
2.2.4.Names for Data Structures|
2.2.5.|Module Structure]|

0O NNNNO U,

=
w

=
SN

[N
NN

[Eny
(&)

=
»

=
\‘

http://www.w3.org/TR/
http://www.w3.org/TR/
http://www.w3.org/MarkUp/2002/Disclosures
http://lists.w3.org/Archives/Public/www-html-editor/
http://lists.w3.org/Archives/Public/www-html/
http://www.w3.org/MarkUp/Group/
http://cgi.w3.org/MemberAccess/AccessRequest
http://www.w3.org/MarkUp/Activity
http://www.w3.org/2002/05/html/charter
http://www.w3.org/2002/05/html/charter

Modularization of XHTML in XML Schema

2.2.6.[Namespace Conventions|
2.2.7.|Documentation Conventions| .
3.[XHTML Schema Modules|
3.1.XHTML Abstract Modules|
3.2.XHTML Schema Modules|
3.2.1.|Required Modules|
3.2.2.|Optional Modules|
3.2.3.[Ruby] .
3.2.4.XHTML Hub Document (Non normatlve)l
3.3.|Validity and Conformance|
3.3.1.XHTML Conformance] .
3.3.2.|Schema Modularization Conformancel
3.3.3.[The XHTML Family of Documents|

A.[References]

Al |Normative References| .
B. [Changed :
B.1. IChanges to Abstract Modulesl ..
B.2.|Changes from DTD Module Implementations|
C.|Acknowledgements|
D.XHTML Schema Module Implementatlonsl .
D.1.XHTML Abstract Modules and XML Schema]
D.2.XHTML Schema Modules|
D.2.1.[XHTML Hub Document] .
D.3.XHTML SCHEMA Modular Framework| .
D.3.1.[XHTML Notations]
D.3.2.[XHTML Datatypes| .
D.3.3.XHTML Common Attribute Deflnltlonsl
D.3.4.XHTML Character Entities|
D.4.XHTML Module Implementations|
D.4.1.[XHTML Core Modules|

D.4.2.[Text Modules|
D.4.3.[Formg
D.4.4.[Tables)
D.4.5.[mage]

D.4.6.[Client-side Image Map|
D.4.7.|Server-side Image Map|

D.4.8.[Applef

D.4.9.[Objecf .
D.4.10. [Frames]
D.4.11.[Targef .
D.4.12.[fframe] .

D.4.13.[Intrinsic Events|
D.4.14. Metainformation|

Full Table of Contents

19
19
21
21
21
21
27
37
37
38
38
38
38
41
41
43
43
43
45
47
47
47
47
49
51
53
55
57
58
58
64
68
78
86
87
Q0
a1
Q2
a3
a5
a7
8
8

Full Table of Contents Modularization of XHTML in XML Schema

D.4.15.[Scripting 9
D.4.16.Biyleshee100
D.4.17.[Style Attribute]10
DA4A8.LNK
D4.19.Bas¢103
D.4.20.|Name Identification| . 0%}
D.4.21.Legacy]105
D.4.22.Ruby]16
D.5.XHTML Schema Support Modulesl e K0 <]
D.5.1.BlockPhrasal109
D.5.2.[Block Presentational| I e
D.5.3.[Block Structurall 112
D.5.4.[nlnePhrasal13
D.5.5.[Inline Presentationadl 115
D.5.6.[Inline Structurall116
D.5.7.[Param . . .
D.5.8.[Miscellaneous Legacyll1s
D.5.9.[Legacy Frames|124
D.5.10.|Optional Module Hupf 125
D.5.11.|Core Hub Module|13
D.5.12.[XHTML 1.1 Content Model| 133

Modularization of XHTML in XML Schema 1. Introduction

1. Introduction

This section is informative.

1.1. Purpose of this document

The purpose of this document is to describe a modularization framework for languages within
the XHTML Namespace using XML Schema [XMLSCHEMA| [p.42]]. There are currently several
public language variants in the XHTML namespace, including XHTML 1.0 [p.41]]
(which includes variants corresponding to the definitions of "Strict", "Transitional", and
"Frameset") and XHTML Basic [XHTMLBASIC|[p.41]]. The development of DTD-based
modularization for XHTML made it possible to refashion XHTML 1.0 in a modularized way

[XHTMLMOD|[p.42]], resulting in XHTML Basic and XHTML 1.1 [XHTML11{[p.41]]. (Here and
throughout this document, the term "XHTML-MOD" is used to refer to [XHTMLMOD|[p.42]].)

This document provides a complete set of XML Schema modules for XHTML. In addition to the
schema modules themselves, the framework presented here describes a means of further
extending and modifying XHTML.

To the largest extent possible, the modularization framework presented here attempts to
duplicate the modularization concepts used in XHTML-MOD. Data structures in the modularized
DTDs are in many cases mapped directly onto data structures in XML Schema. This method
does not yet however, make extensive use of XML Schema-specific features.

This document is based on an approach to modular schemas originally suggested by Rick
Jelliffe and members of the XML Schema Working Group at W3C [APPROACH]|[p.41]].

1.2. Why Modularize?

In the development of any type of complex application, it is important to follow a clear conceptual
standard for organizing the development. The modular approach to design reduces the
application’s functionality into some number of "building blocks" or "modules". These modules
are then combined according to specific rules to form the entire application. This approach offers
numerous advantages:

e Conceptual clarity allows developers to share ideas and code

e Reduces complexity by decomposition of the application’s functionality

® Supports object-oriented design principles by encouraging encapsulation and
information hiding

® Encourages reuse by creating well-defined modules that perform a particular task

Decreases debugging time by localizing errors due to design changes

® Increases flexibility and maintainability because single modules can be upgraded or
replaced independently of others

® Eases development, testing, and maintenance by providing a logical, easy to
understand, and consistent organization

1.3. Design Goals Modularization of XHTML in XML Schema

® Allows the creation of generic rules, methods, and procedures to aid in consistent
development practices

e Creates configurable objects that the end user can tailor for different purposes

® Supports a variety of end user interface and deployment environments by allowing
standardized subsets and supersets.

1.3. Design Goals

Modularity is the property of a system that has been decomposed into a set of cohesive and
loosely coupled modules. [Booch94][p.41]]

These are the design goals for this modularization framework for XHTML:

® To create coherent sets of semantically related modules within the XHTML namespace
using XML Schema

® To support the creation of subsets and supersets of XHTML for specific purposes such as
handheld devices and special-purpose appliances

e To facilitate future development by allowing modules to be upgraded or replaced
independently of other modules

® To encourage and facilitate the reuse of common modules by developers.

1.4. Requirements

This document describes a modularization framework that attempts to reuse the conceptual
ideas in XHTML-MOD, but does not attempt to literally duplicate them in all aspects.

The DTD modularization framework described in XHTML-MOD is subject to a detailed and

explicit[list of requirements| [XHTMLMOD] [p.42]]. The scope of the schema-based framework
described here is also constrained by this set of requirements, and is believed to have fulfilled
them in their entirety.

http://www.w3.org/TR/xhtml-modularization/goals.html#s_intro_requirements

Modularization of XHTML in XML Schema 2. Schema Modularization Framework

2. Schema Modularization Framework

This section is informative.

2.1. How Schema Modularization Works

2.1.1. DTDs and XML Schema

Both DTDs and XML Schema are designed to accomplish the same fundamental task: to define
the structure of XML document types. In this sense both are simply different text representations
for the same underlying data structures. However, Schema and DTDs differ significantly in
several ways, both in structure and capabilities.

Some differences worth noting are:

Common XML features
XML Schema are XML documents themselves and therefore share many aspects of the
languages they define.

Data typing
Schemas are designed with a much larger set of built-in data types than DTDs, and provide
methods for creating user-defined types.

Namespaces
DTDs only partially support XML Namespaces [p.42]], which are inherently a
part of XML Schema.

Extension
XML Schema have a rich set of extension mechanisms including inheritance, redefinition,
and substitution.

Entities
There is no mechanism in XML Schema corresponding to the use of entities for data
abstraction in DTDs. In many cases the functionality of entities can be replaced through
other XML-based mechanisms. However, there is currently no support for named character
entity references as used in XHTML within XML Schema. In the XML Schema modules
described here, named character entities for XHTML are included using a DTD.

DTDs and Document Order Dependence
A more subtle feature of modularized DTDs is their dependence on the document order; the
order in which elements and entities are defined within DTD files has a large impact on
language development. XML Schema are far less dependent on document order.

2.1.2. Document Data Structures

XML language definitions, regardless of their text representation, contain at least three types of
data structures. When combined into a coherent and consistent whole, they form a complete
language definition. These three components are:

2.1.3. Understanding XHTML Modularization Modularization of XHTML in XML Schema

® Elements
® Attributes
e Content models

Additional abstract data structures may be defined for use in the language definition, such as
common content models or attribute groups, whose use is shared by other data structures within
the language definition. The definition of these structures is the primary task of language
development, and the core of the modularization framework.

2.1.3. Understanding XHTML Modularization

This schema modularization framework consists of two parts:

1. A set of schema modules that conform to the abstract modules in XHTML
2. A set of modularization conventions that describe how the individual modules work together,
and how they can be modified or extended.

In XHTML-MOD, every object in the DTDs is represented by an XML entity. These entities are
then composed into larger sets of entities and so on, resulting in a set of data abstractions that
can be generalized and used modularly. These multiple levels of abstraction are tied together by
the use of a specific naming convention and a set of abstract modules.

Generic classes of entities (composed of sub- and sub-sub-entities) are used to create
definitions of the three components listed above. Content models, attribute lists and elements
are defined separately, sometimes in separate modules, and the ordering of the modules in the
DTD structure is strictly defined (due to document order dependence). They are then combined
to form the resulting document type. Extensibility is accomplished through the extensive use of
INCLUDE/IGNORE sections in the DTD modules. How each of these structures relates to its
Schema-based counterpart is summarized in Table 1 below.

2.1.4. Mapping DTDs onto Schema

Both the DTD and schema-based modularization frameworks implement a set of formalized data
structures, often in a conceptually similar way. The modularization framework described here is
designed around the use of similar data structures, which can be represented (more or less)
equally well in either representation. This is accomplished through the use of a straightforward
mapping of data structures defined in the DTD modules onto equivalent data structures in the
XML Schema language.

2.1.4.1. Content Models

In XHTML-MOD, content models for elements are defined using three classes of entities,
identified through the naming conventions by the suffixes ".content”, ".class", and ".mix". Each of
these classes of entities is mapped onto a corresponding Schema counterpart in the following

way:

Modularization of XHTML in XML Schema

2.1.4. Mapping DTDs onto Schema

".content" models -these models are used to define the contents of individual elements. For
each element there is a corresponding ".content” object. IN XML Schema, ".content" entities are

mapped directly onto groups:

Example 1 - Content Group

DTD

Schema

<ENTITY % htm . content " (head+, body+)">

<group nanme="htm .content">
<sequence>
<el ement ref="head" m nCccurs="1">
<el ement ref="body" m nCccurs="1">
</ sequence>
</ gr oup>

The contents of ".content" groups are often classes or mixes.

".class" models - these models are used to define abstract classes of content models made up
of either ".content" entities or other ".class" entities (or elements). In XML Schema they
correspond to groups that may also contain substitution groups:

Example 2 - ".class" Group

DTD

Schema

<IENTITY % M sc.class "%&dit.class;
uscri pt. cl ass;
oM sc.extra; ">

<group nane="M sc. cl ass">
<choi ce m nCccurs="0"
maxQccur s="unbounded" >

<el enment

<el enment

<el enment

</ choi ce>
</ group>

ref="Edit.class"
abstract="true"/>
ref="Script.class"
abstract="true"/>
ref="Msc.extra"
abstract="true"/>

".mix" models - these models correspond to content models that are mixed groupings of
".class", ".content”, and ".mix" entities and serve as abstract content models often used in
common by many elements in the DTD. They correspond to groups in XML Schema:

2.1.4. Mapping DTDs onto Schema Modularization of XHTML in XML Schema

Example 3 - ".mix" Group

DTD Schema

<group nane="Bl ock. m x">
<choi ce m nCccurs="0"
maxCccur s="unbounded" >
<group ref="Headi ng.cl ass"/>
<group ref="List.class"/>
<group ref="Bl ock.class"/>
<group ref="Msc.class"/>
</ choi ce>
</ gr oup>

<IENTITY % Bl ock. m x "%deadi ng. cl ass;
| %.ist.class;
| 9Bl ock. cl ass
%M sc. cl ass; ">

In addition to these three content model groupings, XHTML-MOD includes an additional
grouping ".extra". These are currently omitted from the schema modules. (If needed, a
developer could add them to the schema modules in a conformant way.)

2.1.4.2. Attributes and Attribute Groups

Attributes and Attribute lists in DTDs correspond directly to attribute and attributeGroup
elements in XML Schema. The translation from one to the other is relatively simple and
straightforward. Here is an example:

Example 4 - Attribute Group

DTD Schema

<attributeGoup nane="title">
<attribute nane="title" type="string"/>
</attributeG oup>

<IENTITY %title.attrib
"title %ext.datatype; #l MPLIED"'>

Complex attribute groups that are used by many different elements are grouped in the DTDs
using entities suffixed with ".attrib". These attribute entities map directly onto attributeGroup
elements in XML Schema as shown above.

2.1.4.3. Complex Types and Element Definitions

The XML Schema specification allows elements as well as attribute values to be strongly typed.
In defining elements in the modularized schema, an element type is created for each element
that is a complex type composed of the content model (element.content) and the attribute list
(element.attlist) as shown below:

Example 5 - Element Types In Schema

<conpl exType name="formtype">
<group ref="formcontent"/>
<attributeGoup ref="formattlist"/>
</ conpl exType>

-10-

Modularization of XHTML in XML Schema 2.1.4. Mapping DTDs onto Schema

Elements are then declared to be of the type element.type:

Example 6 - Element Definition

<el enent nane="forn!' type="formtype"/>

This allows the author the greatest degree of flexibility while retaining strict type checking via
XML Schema. It also allows for extension of the element via type substitution.

Note that in the case of an element with a mixed content model, a complexType is necessary.

In summary, each element is composed of a content model and an attribute list, which are
composed into a type for that element.

2.1.4.4. Attribute and Element Redefinitions

XML Schema allows inheritance and redefinition of elements, groups, attributes and
attributeGroups. In several cases modules require modification of previously declared attribute
lists. This is done by using the <xsd:redefine> element to redefine the attributeGroup that needs
to be modified

Example 7 - attributeGroup Redefinition Example

<I- - new attribute to be added - - >
<attributeG oup nanme="align.legacy.attlist">
<attribute nane="align">
<si npl eType>
<restriction base="NMICKEN'>
<enureration value="left"/>
<enurer ation val ue="center"/>
<enuneration val ue="right"/>
<enuneration val ue="justify"/>
</restriction>
</ si nmpl eType>
</attribute>
</attributeG oup>

<I- - add it to the caption elenent’s attribute group - - >
<redefi ne schenmaLocati on="xhtm -tabl e-01. xsd">
<attributeG oup nane="caption.attlist">
<ext ensi on base="align.attlist"/>
<attributeGoup ref="align.legacy.attlist"/>
</ ext ensi on>
</attributeG oup>
</redefine>

In this example, we redefine the attribute list for the caption element in the tables module to add
the align attribute defined in align.legacy.attlist.

-11 -

2.1.4. Mapping DTDs onto Schema Modularization of XHTML in XML Schema

2.1.4.5. Support Structures

The modularized DTDs contain support mechanisms for XHTML. Some of these are
DTD-specific and are not fully supported in XML Schema.

This modularization framework attempts to recreate these support structures to the greatest
extent possible.

2.1.4.5.1. Notations

Notations are an SGML feature that allows non-SGML data within documents to be interpreted
locally [CATALOG]|[p.41]]. Notations for XHTML are preserved in the Schema modules using
the notation element in a straightforward way.

Example 8 - Notations

DTD Schema
<! NOTATI ON char act er <not ati on nanme="charset"
PUBLI C "-//WBC/ / NOTATI ON public="-//WBC/ / NOTATI ON
XHTML Dat at ype: Character//EN'> XHTML Dat at ype: Charset//EN'/>

2.1.4.5.2. Data Types

The strong typing mechanism in XML Schema, along with the large set of intrinsic types and the
ability to create user-defined types, provides for a high level of type safety in instance
documents. This feature can be used to express more strict data type constraints, such as those
of attribute values, when using XML Schema for validation.

Example 9 - Simple Data Types

DTD Schema

<si npl eType nane="Lengt h">
<IENTITY % Lengt h. dat at ype " CDATA" > <restriction base="string"/>
</ si npl eType>

2.1.4.5.3. Named Character Entities

XML Schema provides no means of duplicating XHTML'’s named character entity mechanism. In
most cases data abstraction through entities can be dispensed with in schemas. However, in the
case of named character references, no replacement method is available.

Character entities are used to represent characters that occur in document data that may not be
processed natively on the user’s machine, for instance the copyright symbol. XHTML makes use
of 3 sets of named character entities: the 1ISO Latin 1, Symbols, and Special.

-12 -

Modularization of XHTML in XML Schema 2.2. Framework Conventions

A general solution for the resolution of language-specific named character entities is outside the
scope of this document.

Entities are currently referenced in this framework as using a DTD reference to three individual

DTD modules that define them.

2.1.4.6. Mapping Summary

The following table summarizes the mapping of DTD data structures onto XML Schema

structures.

Table 1 - Mapping of DTD and Schema Data Structures

DTD Entity Use Schema Element
.content Element content model | group

.Class Abstract content model | group

.mix Abstract content model | group

.attlist Attribute lists attributeGroup

.attrib attributes Attribute

.extra Abstract attribute group | attributeGroup
elements Element definitions Elements+complexType

attribute redefinition

Attribute list redefinition

AttributeGroup w/redefine

notation SGML specific notation

datatypes attribute datatypes simpleType

entities Character replacement | DTD reference

DTD "driver" Framework document | "Hub" Schema document

One further issue of note in the conversion of DTDs to XML Schema is that it is absolutely
necessary to define all elements globally. Otherwise they are not considered to be in the XHTML
namespace but only "associated" [XMLSCHEMA COMPOSITION] [p.42]] with it. This document
does not make use of this association feature in XML Schema.

2.2. Framework Conventions

This section is normative.

-13-

2.2.1. Modularized Schemas Modularization of XHTML in XML Schema

This modularization framework consists of a complete set of XHTML schema modules and a set
of framework conventions that describe how to use them. The use of the framework conventions
is required for conformance.

2.2.1. Modularized Schemas

The modularized XHTML schema uses three types of modules, which when combined comprise
the entire XHTML definition.

2.2.1.1. Hub document

The Schema hub document is the base document for the schema. It contains only annotations
and modules, which in turn contain <xsd:include> statements referencing other modules. The
hub document corresponds to the DTD "driver" module in XHTML-MOD, but is much simpler.
The hub document allows the author to modify the schema’s contents by the simple expedient of
commenting out modules that are not used. Note that some modules are always required in
order to ensure conformance.

The (non-normative) example hub document described here contains <include> elements for
two modules, named "required" and "optional". Each of these included modules is itself a
container module.

2.2.1.2. Container Modules

Module containers, reasonably enough, include other modules. Modules and their containers are
organized according to function. Including the hub document, which is a special case of a
module container, there are ten included module containers.

2.2.1.3. Element modules

In addition to the module containers listed above, there are around forty schema modules which
contain only element definitions and their associated attribute and content model definitions. By
convention, Schema modularizations may contain either <include> statements or element
definitions but not both.

2.2.2. Module Naming

In order to easily identify the contents of any particular schema module, it is useful to provide
here a module naming convention syntax. This syntax also provides a simple means of
distinguishing modules based on their language version, which may improve maintainability of
the modules themselves.

The module naming convention adopted here is the same in almost all respects as that used in
XHTML-MOD.

-14 -

Modularization of XHTML in XML Schema 2.2.3. Module Hierarchy Structure

Schema modules for XHTML should have names that:

® Are supported on all common platforms
e |dentify the contents of the modules
e |dentify the language version of the module

Modules used in this modularization framework must have names that conform to the following
syntax:

Example 10 - Schema Module Naming Convention

Pattern | anguagenane-fil econt ent sdescri pti on-versi onnunber. xsd

Example xht nl -t abl e- 01. xsd

Exceptions to this rule are made for the Schema hub modules whose names are the same as
above but may omit the content description syllable for brevity.

Version numbers of hub modules may omit the leading zero in the version number, but should
include the minor version number.

Example: xhtml-1.1.xsd

In the case where a hub module contains elements or attributes from external namespaces, the
name(s) of the external module(s) should be appended to the base language name using the "+"
character.

Example: xhtml+fml-1.0.xsd

This module naming convention is intended also to comply with the required use of the media

type in [XHTMLMIME] [p.41]].
2.2.3. Module Hierarchy Structure

In order to establish a physical structure for the composition of the Schema modules that

corresponds to the abstract modules in XHTML, a module hierarchy structure has been used to
organize the physical modules. The hierarchy structure looks like this:

-15-

2.2.4. Names for Data Structures Modularization of XHTML in XML Schema

Table 2 - Schema Module Hierarchy
Structure

xhtm /

xhtm /req/

xhtm / req/ framewor k/
xhtm /req/ core/

xhtm /req/ core/text/
xhtm / opt/

xhtm /opt/ pres/

xhtm /opt/ 1 egacy/

xhtm /opt/ | egacy/ m sc/
xhtm /opt/ | egacy/ franes/

These correspond to the divisions of XHTML into abstract modules described in detail in Section
3.2. The hierarchy structure is intended to match the abstract module structure as closely as
possible. This feature is not present in DTD modularization, and is not required for Schema
modularization. It does, however, allow the developer to organize the modules in accordance
with their hierarchical structure. The directories listed in Table 2 also correspond exactly to the
module container modules in this framework.

2.2.4. Names for Data Structures

The consistent use of naming conventions is important for the maintenance and development of
complex software applications.

Adhering to these conventions provides numerous benefits to developers:

e Simplifies testing and debugging by managing complexity.
® Eases maintenance by allowing any developer to read and understand another developer’'s
code.

® Provides self-documenting code by using descriptive names and predictable naming
conventions.

e Enforces encapsulation by using consistent naming conventions for public and private
knowledge.

With few exceptions, the naming conventions used in XHTML-MOD are preserved in this
framework.

The naming convention in XHTML-MOD uses suffixing of object names to indicate functionality,
as described below.

2.2.4.1. Attributes

Abstract attribute groups and attribute lists are suffixed with the ".attrib" and ".attlist" suffixes
respectively.

-16 -

Modularization of XHTML in XML Schema 2.2.5. Module Structure

2.2.4.2. Content models

Three different suffixes are used in content model names. They are ".content" for element
content models, and ".class" or ".mix" for abstract content models.

2.2.4.3. Elements

Element names are not suffixed in XHTML-MOD. This document uses the notion of element
types, which are complexTypes used to define elements and are suffixed with ".type". The
".type" suffix was used in XHTML-MOD for attribute data types. This is superfluous in XML
Schema (since attribute types are arguments to the "type" attribute) and so the suffix is used in a
different way in this framework.

2.2.5. Module Structure

This document establishes a convention for the internal structure of XHTML Schema modules.
This convention provides a consistent and predictable way of organizing schema modules
internally. This convention applies also to the hub document, which is itself simply a module of
modules, albeit a somewhat specialized one.

Each schema module is composed of several components, some of which are required for
functional reasons and some of which provide metadata as a convenience to the author. Not
every component is included in every module.

2.2.5.1. Schema Element

Each module begins with a <xsd:schema> root element (after the optional xml declaration and
DOCTYPE).

2.2.5.1.1. Use of Version Attribute

In the XHTML schema modules, the version humber for the specific language being defined
(e.g. "1.1") is used as the default value of the version attribute on the schema element.

2.2.5.1.2. Qualified names

This framework uses the value of "unqualified" for the value of the elementFormDefault attribute
on the schema root element. Elements within the XHTML namespace do not need to use a
namespace prefix.

2.2.5.2. Annotation Block

After the root element each module contains an annotation element containing several
documentation sections briefly describing the purpose of the module.

-17 -

2.2.5. Module Structure Modularization of XHTML in XML Schema

2.2.5.2.1. Module Description
This is an annotation element that contains a short description of the module and its purpose.
2.2.5.2.2. Versioning Block

An annotation element containing authoring and versioning information for the module should
always be included.

2.2.5.2.3. Copyright

The standard W3C copyright statement is included in each module through the use of an include
element. An exception is the hub document, which contains the full copyright text.

2.2.5.2.4. Documentation

This is a module specific documentation element providing detailed information about the
module’s contents, its organization, and any noteworthy items of interest to developers.

2.2.5.3. 3. Module elements

Module elements contain include statements, import statements, or other modules (or
comments). They must precede any other definitions in the module.

2.2.5.4. 4. Content model groups

These include groups with names ending in ".content", ".class", or ".mix".

2.2.5.5. 5. Attributes and Attribute groups

These are suffixed with either ".attrib" or ".attlist".

2.2.5.6. 6. Element type definitions

These are complexType elements defining each element’s type.

2.25.7. 7. Element definitions
These define individual elements in the module.
Additional constraints on the internal structure of schema modules are:

Each module must contain include statements for other modules or data structure definitions,
but not both.

Each module must include at least sections 1 and 2 above, as well either section 3 or some
combination of sections 4-7.

-18-

Modularization of XHTML in XML Schema 2.2.6. Namespace Conventions

2.2.6. Namespace Conventions

The handling of namespaces in XML Schema is entirely different from that in XHTML-MOD.
Namespaces are integral to XML Schema and their use in modularization arises naturally from
the schema syntax.

One convention chosen for this framework is that the names of elements and attributes in the
modules are unqualified i.e. no namespace prefix is required for XHTML elements.

This is set by using the value of "unqualified" on the elementFormDefault attribute of the
xsd:schema element.

2.2.7. Documentation Conventions

A consistent commenting convention has been imposed on the modules described here. The
purpose of a commenting convention is to allow for generating documentation from the
comments (as well as general comprehension). Documentation elements containing
Annotation-level comments are assumed to be of the highest importance and should be used to
denote information about the module itself, and for important notes for developers.

ModuleF-level comments are denoted as usual with SGML comment delimiters "<!--" and "-->".
By means of this convention, modules can become self-documenting. Tools for extracting these
comments and formatting them suitably may (hopefully) be developed in the future.

-19-

2.2.7. Documentation Conventions Modularization of XHTML in XML Schema

-20-

Modularization of XHTML in XML Schema 3. XHTML Schema Modules

3. XHTML Schema Modules

This chapter is normative.

3.1. XHTML Abstract Modules

The DTD modularization framework specification speaks at length on the subject of abstract
modules. In brief, an "abstract" module is simply a set of objects, in this case objects within an
ordered hierarchy of content objects, which encapsulates all of the features of the objects and
assembles them into a coherent set. This set of objects and their properties is independent of its
machine representation, and so is the same whether written in DTD module form, as a Schema
module, or as a Java class.

The abstract modules described in XHTML-MOD are composed in a functional manner, and
each "abstract module" contains data structures that are generally functionally similar. (There is
no requirement that modules be created along functional lines; any other method that suits the
author’'s purpose may be used instead.)

The framework described here makes use of the same abstract modules as in XHTML-MOD
with few exceptions. In the case of the schema module representation, the relationship between
the "abstract" modules and the schema modules is quite close. In each case there is a
one-to-one relationship between the abstract and concrete modules (with one exception for the
changes to the legacy module) and they share essentially the same names and data structures.

3.2. XHTML Schema Modules
3.2.1. Required Modules

These modules must be included in any document that uses the XHTML namespace. Each
section below describes the purpose of the module and its contents.

None of the modules defined here should be modified by developers; instead use <redefine> or
a substitution group.

Schema location [SCHEMA/reg/xhtml-framework-1.xsd] [p.49]

Use Required
Type Module Container
Description Required XHTML modules

Contents SCHEMA/reg/xhtml-framework-1.xsd|[p.49]
SCHEMA/reg/xhtml-core-1.xsd|[p.131]

Redefinitions No
Dependencies |None

-21 -

3.2.1. Required Modules

3.2.1.1. Framework Modules

This is a module

container for XHTML language support modules.

Schema location

SCHEMA/req/xhtml-framework-1.xsd|[p.49]

Use Required

Type Module Container

Description Language support modules
SCHEMA/reg/framework/xhtml-notations-1.xsd| [p.51]
SCHEMA/reqg/framework/xhtml-datatypes-1.xsd| [p.53]

Contents SCHEMA/reg/framework/xhtml-attribs-1.xsd| [p.55]

SCHEMA/reg/framework/xhtml11-model-1.xsd| [p.133]
SCHEMA/reg/framework/xhtml-charent-1.xsd|[p.57]

Redefinitions

No

Dependencies

None

3.2.1.1.1. Notations

Schema location

SCHEMA/reg/framework/xhtml-notations-1.xsd| [p.51]

Use Required
Type Language Support- SGML notations
Contents SGML Notations- see the SGML catalog file

Redefinitions

No

Dependencies

None

3.2.1.1.2. Data types

Schema location

SCHEMA/reqg/framework/xhtml-datatypes-1.xsd| [p.53]

Use Required

Type Language Support - common data types
Contents XHTML data type definitions
Redefinitions No

Dependencies |None

3.2.1.1.3. Common Attributes

-22 -

Modularization of XHTML in XML Schema

Modularization of XHTML in XML Schema 3.2.1. Required Modules

Schema location[SCHEMA/reg/framework/xhtml-attribs-1.xsd| [p.55]

Use Required
Type Language Support - common attribute groups
Contents Abstract attribute groups

Redefinitions No
Dependencies |Element definitions

3.2.1.1.4. Common Content Models

Schema location [SCHEMA/reg/framework/xhtmlZ1-model-1.xsd] [p.133]

Use Required
Type Language Support - common content model groups
Contents Abstract content models

Redefinitions No

Dependencies |Element definitions

3.2.1.1.5. Character Entities

The character entities module includes three DTD modules, each referencing one of the
required entity sets in XHTML: ISO Latin-1, Symbols, and Special characters.

Character entities are not fully supported in XML Schema, as described in Section 2.1.

Schema location[SCHEMA/reg/framework/xhtml-charent-1.xsd] [p.57]

Use Required
Type Language Support
Contents Character Entities for XHTML

Redefinitions No
Dependencies |None

3.2.1.2. Core Element Modules

These are the core element definitions for the required modules.

-23-

3.2.1. Required Modules Modularization of XHTML in XML Schema

Schema location

|[SCHEMA/reg/core/xhtml-core-1.xsd|[p.131]

Use

Required

Type Module Container

Description Core element modules
SCHEMA/reg/core/xhtml-text-1.xsd| [p.60]
SCHEMA/reg/core/xhtml-hypertext-1.xsd| [p.61]

Contents

SCHEMA/reg/core/xhtml-list-1.xsd| [p.62]
SCHEMA/reg/core/xhtml-struct-1.xsd] [p.58]

Redefinitions

No

Dependencies

None

3.2.1.2.1. Text Modules

Schema location

SCHEMA/reqg/core/xhtml-text-1.xsd|[p.60]

Use

Required

Type Module Container

Description Text element modules
SCHEMA/reg/core/text/xhtml-blkphras-1.xsd|[p.109]

Contents SCHEMA/reg/core/text/xhtmlI-blkstruct-1.xsd] [p.112]

SCHEMA/reg/core/text/xhtml-inlphras-1.xsd|[p.113]
SCHEMA/reg/core/text/xhtml-inlstruct-1.xsd| [p.116]

Redefinitions

No

Dependencies

None

Block Phrasal

-24 -

Modularization of XHTML in XML Schema

Schema location

SCHEMA/req/core/text/xhtml-blkphras-1.xsd|[p.109]

Use

Required

Type

Element definitions

Redefinitions

No

Dependencies

None

Elements

address| [p.110]
blockquote] [p.110]
h][p.111]
h2[p.111]
h3)[p.111]
h4][p.111]
h5][p.111]

h6] [p.111]

pre] [p.111]

Redefinitions

No

Dependencies

None

Block Structural

Schema location

SCHEMA/reg/core/text/xhtml-blkstruct-1.xsd] [p.112]

Use Required
Type Element definitions
divi[p.113]
Elements :/I
bl [p.113]
Redefinitions No
Dependencies |None

Inline Phrasal

-25-

3.2.1. Required Modules

3.2.1. Required Modules

Schema location

SCHEMA/reg/core/text/xhtml-inlphras-1.xsd|[p.113]

Use

Required

Type

Element definitions

Elements

[abbr [p.114]
[acronym] [p.114]
[citel [p.114]
[code] [p.114]
[af] [p.114]
lem [p.114]
[Kbd] [p.114]
[dlp.114]
[sampl [p.114]
[strong] [p.114]
Vai [p.114]

Redefinitions

No

Dependencies

None

Inline Structural

Schema location

SCHEMA/reg/core/text/xhtml-inistruct-1.xsd| [p.116]

Use Required

Type Element definitions
[br][p.116]

Elements [0.116]

Redefinitions No

Dependencies |None

3.2.1.2.2. Hypertext

Schema location

SCHEMA/reqg/core/xhtml-hypertext-1.xsd| [p.61]

Use

Required

Type Element definitions
Elements [l[p.62]
Redefinitions No

Dependencies |None

3.2.1.2.3. Lists

-26-

Modularization of XHTML in XML Schema

Modularization of XHTML in XML Schema 3.2.2. Optional Modules

Schema location [SCHEMA/reg/core/xhtml-list-1.xsd] [p.62]
Use Required
Type Element definitions

[p.63]

[p.64]

[p.63]

Elements

[i] [p.64]

[p.64]

[p.64]
Redefinitions No
Dependencies |None

3.2.1.2.4. Structural

Schema location[SCHEMA/reg/core/xhtml-struct-1.xsd] [p.58]
Use Required
Type Element definitions

[p.60]
[head|[p.59]
Elements [0.60]

[p.59]

Redefinitions No
Dependencies |None

3.2.2. Optional Modules

These modules are (clearly) optional; they may be removed or combined arbitrarily (except for
dependencies). Developers should not modify the contents of these files as they part of the
XHTML definition. Instead, extension in the optional modules should be confined to redefinitions

and derivations.

-27-

3.2.2. Optional Modules

Modularization of XHTML in XML Schema

Schema location

SCHEMA/xhtml-optional-1.xsd| [p.125]

Use

Required

Type

Module Container

Description

Optional modules

Contents

SCHEMA/opt/xhtml-edit-1.xsd

SCHEMA/opt/xhtml-bdo-1.xsd| xsd|

CHEMA/oEt/xhtmI link-1.xs |[p 102]
SCHEMA/opt/xhtml-meta-1.xsd|
SCHEMA/opt/xhtml-base-1.xsd
SCHEMA/opt/xhtml-script-1.xsd] [p.99]

SCHEMA/opt/xhtml-style-1.xsd] [p.100]

CHEMA/oEt/xhtmI image-1.xs |[p 86]
SCHEMA/opt/xhtml-csismap-1.xsd|
SCHEMA/ogt/xhtmI—ssismap—l.xsd‘
SCHEMA/opt/xhtml-param-1.xsd|[p.117]
SCHEMA/opt/xhtml-applet-1.xsd]
SCHEMA/opt/xhtml-object-1.xsd]|
SCHEMA/opt/xhtml-table-1.xsd] [p.81]
SCHEMA/opt/xhtml-form-1.xsd] [p.71]
SCHEMA/opt/xhtml-nameident-1.xsd] [p.104]
SCHEMA/opt/xhtml-legacy-1.xsd] [p.105]
SCHEMA/opt/frames/xhtml-frames-1.xsd| [p.93]
SCHEMA/opt/frames/xhtml-target-1.xsd] [p.95]
SCHEMA/opt/frames/xhtml-iframe-1.xsd] [p.97]
SCHEMA/reg/framework/xhtml-events-1.xsd] [p.98]
SCHEMA/opt/xhtmi-ruby-1.xsd] [p.106]

[p.66]
[p.67]

| [p.98]
[p.103]

| [p.87]
[p.90]

[p.91]
[p.92]

Redefinitions

No

Dependencies

None

3.2.2.1. Edit

Schema location

SCHEMA/opt/xhtml-edit-1.xsd| [p.66]

Use Optional

Type Element definitions
[p.66]

Elements [0.66]

Redefinitions No

Dependencies |None

-28-

Modularization of XHTML in XML Schema 3.2.2. Optional Modules

3.2.2.2. Bdo

Schema location [SCHEMA/opt/xhtml-bdo-1.xsd] [p.67]
Use Optional

Type Element definitions

Elements [p.67]
Redefinitions No
Dependencies |None

3.2.2.3. Presentational

Schema location|[SCHEMA/opt/xhtml-pres-1.xsd| [p.64]

Use Optional
Type Module Container
Description Presentational element modules

Contents SCHEMA/opt/pres/xhtml-blkpres-1.xsd|[p.111]
SCHEMA/opt/pres/xhtml-inlpres-1.xsd|[p.115]

3.2.2.3.1. Inline Presentational

Schema location [SCHEMA/opt/pres/xhiml-inlpres-1.xsd] [p.115]
Use Optional
Type Element definitions

bl[p.115]
[p.113]
l[p.115]
Elements [p.115]
[p.115]
[p.115]
[t [p.115]

Redefinitions No

Dependencies |None

3.2.2.3.2. Block Presentational

-29-

3.2.2. Optional Modules

Schema location [SCHEMA/opt/pres/xhiml-blkpres-1.xsd] [p.111]
Use Optional

Type Element definitions

Elements [p.112]

Redefinitions No

Dependencies |None

3.2.2.4. Link

Schema location [SCHEMA/opt/xhimI-link-1.xsd] [p.102]
Use Optional

Type Element definitions

Elements [p.103]

Redefinitions No

Dependencies |None

3.2.2.5. Meta

Schema location [SCHEMA/opt/xhtml-meta-1.xsd| [p.98]
Use Optional

Type Element definitions

Elements [p.99]

Redefinitions No

Dependencies |None

3.2.2.6. Base

Schema location [SCHEMA/opt/xhtml-base-1.xsd] [p.103]
Use Optional

Type Element definitions

Elements [p.103]

Redefinitions No

Dependencies |None

3.2.2.7. Scripting

-30-

Modularization of XHTML in XML Schema

Modularization of XHTML in XML Schema

Schema location [SCHEMA/opt/xhtml-script-1.xsd] [p.99]
Use Optional
Type Element definitions
[p.100]
Elements [0.100]
Redefinitions No
Dependencies |None
3.2.2.8. Style
Schema location [SCHEMA/opt/xhtmi-style-1.xsd] [p.100]
Use Optional
Type Element definitions
Elements [p.101]
Redefinitions No
Dependencies |None
3.2.2.9. Image
Schema location [SCHEMA/opt/xhtml-image-1.xsd] [p.86]
Use Optional
Type Element definitions
Elements [p.87]
Redefinitions No
Dependencies |None

3.2.2.10. Client-side Image Maps

Schema location [SCHEMA/opt/xhtmI-csismap-1.xsd| [p.87]
Use Optional
Type Element definitions
area|[p.89
Elements [[E 90]]
Redefinitions No
Dependencies |None

-31-

3.2.2. Optional Modules

3.2.2. Optional Modules

3.2.2.11. Server-side Image Maps

Schema location[SCHEMA/opt/xhtmi-ssismap-1.xsd] [p.90]
Use Optional

Type Attribute definitions

Redefinitions No

Dependencies |None

3.2.2.12. Param

Schema location[SCHEMA/opt/xhtml-param-1.xsd] [p.117]
Use Optional

Type Element definitions

Elements [p.117]

Redefinitions No

Dependencies |None

3.2.2.13. Applet

Schema location

SCHEMA/opt/xhtml-applet-1.xsd|[p.91]

Use Optional

Type Element definitions
Elements [p.92]
Redefinitions No

Dependencies

Param::param

3.2.2.14. Object

Schema location

SCHEMA/opt/xhtml-object-1.xsd| [p.92]

Use Optional

Type Element definitions
Elements [p.93]
Redefinitions No

Dependencies

Param::param

-32-

Modularization of XHTML in XML Schema

Modularization of XHTML in XML Schema

3.2.2.15. Tables

Schema location

SCHEMA/opt/xhtml-table-1.xsd|[p.81]

Use

Optional

Type

Element definitions

Elements

caption] [p.85]
col| [p.84]
colgroup] [p.84]
table] [p.86]
tbody] [p.84]

td] [p.83]

tfoofl [0.85]

th] [p.83]
thead][p.85]

tr [p.83]

Redefinitions

No

Dependencies

None

3.2.2.16. Forms

Schema location

SCHEMA/opt/xhtml-form-1.xsd|[p.71]

Use

Optional

Type

Element definitions

Elements

[p.78]
[p.77]

option] [p.76]
select] [p.
textarea] [p.76]

Redefinitions

No

Dependencies

None

3.2.2.17. Nameident

-33-

3.2.2. Optional Modules

3.2.2. Optional Modules Modularization of XHTML in XML Schema

Schema location [SCHEMA/opt/xhtml-nameident-1.xsd] [p.104]
Use Optional

Type Attribute definitions

Redefinitions No

Dependencies |None

3.2.2.18. Legacy

This module has been reorganized to conform to the framework conventions used here. It has
been divided here into two separate modules. The "misc" module contains everything in the
DTD legacy model except frames. Frames are now in a separate module called framedefs. This
allows the developer to easily separate the legacy features if desired.

Schema location SCHEMA/opt/xhtml-legacy-1.xsd|[p.105]

Use Optional
Type Module container
Contents SCHEMA/opt/misc/xhtml-misc-1.xsd|[p.118]

SCHEMA/opt/xhtml-framedefs-1.xsd| [p.124]
No
None

Redefinitions

Dependencies

3.2.2.18.1. Misc

Schema location [SCHEMA/opt/misc/xhtml-misc-1.xsd] [p.118]

Optional
Element definitions

[p-119]
[p.119]
[p.120]
[p.119]
[p.120]
[p.120]
[p.119]

[p.119]
[p.120]

Use
Type

Elements

Redefinitions

Yes

Dependencies

Yes

-34-

Modularization of XHTML in XML Schema

3.2.2.18.2. Framedefs

Schema location

SCHEMA/opt/xhtml-framedefs-1.xsd| [p.124]

Use

Optional

Type Element definitions
SCHEMA/opt/xhtml-frames-1.xsd| [p.124]
Contents SCHEMA/opt/frames/xhtml-target-1.xsd] [p.95]

SCHEMA/opt/frames/xhtmi-iframe-1.xsd|[p.97]

Redefinitions

Yes

Dependencies |Yes
Frames
Schema location [SCHEMA/opt/frames/xhtml-frames-1.xsd] [p.93]
Use Optional
Type Element definitions
[frame] [p.95]
Elements [p.94]
[p.95]
Redefinitions Yes
Dependencies |Target::target

Target

Schema location

SCHEMA/opt/frames/xhtml-target-1.xsd|[p.95]

Use Optional

Type Attribute redefinitions
Redefinitions Yes

Dependencies |Yes

Iframe

Schema location

SCHEMA/opt/frames/xhtml-iframe-1.xsd|[p.97]

Use Optional

Type Element definitions
Elements [p.98]
Redefinitions Yes

Dependencies

Target::target

-35-

3.2.2. Optional Modules

3.2.2. Optional Modules Modularization of XHTML in XML Schema

3.2.2.19. Basic Forms

Schema location[SCHEMA/opt/xhtml-basic-form-1.xsd| [p.68]
Use Optional
Type Element definitions
fform|[p.69]
in ut| [p.70]
labell [p.69]
Elements _m]n [0.71]
select] [p.70]
textarea] [p.71]
Redefinitions No
Dependencies |Removal of Forms

3.2.2.20. Basic Tables

Schema location [SCHEMA/opt/xhtmI-basic-table-1.xsd] [p.78]
Use Optional
Type Element definitions
caption] [p.79]
table] [p.79]
Elements td] [p.80]
th] [p.80]
tr [p.80]
Redefinitions No
Dependencies |Removal of Tables

3.2.2.21. Events

Schema location[SCHEMA/reg/framework/xhtml-events-1.xsd| [p.98]

Use Required
Type Language Support - common events attributes
Contents Common events attributes for XHTML

Redefinitions Yes

Dependencies |Element definitions

-36 -

Modularization of XHTML in XML Schema 3.2.3. Ruby

3.2.3. Ruby
Ruby elements denote annotations used in some Asian languages [p.41]].

The Ruby module has been moved into the optional element definitions module. Note that it is
normatively required in XHTML 1.1

Schema location [SCHEMA/opt/xhtmI-ruby-1.xsd] [p.106]
Use Required

Type Element definitions

[p.109]
[p.108]
[p.109]
[p.109]
[p.108]
[p.108]

Elements

Redefinitions No

Dependencies |None

3.2.4. XHTML Hub Document (Non-normative)

This is an example base schema document that includes all the other modules to create the
complete schema.

3.24.1. XHTML 1.1

The hub document included here intends to approximate XHTML 1.1 subject to the requirements
given in Section 1.4. This schema should be fully equivalent to the DTD version except for
schema-specific additions and changes. This hub document is non-normative and provided only
as an example.

Schema location|[SCHEMA/xhtml-1.1.xsd|[p.47]

Use Main schema document
Type Module Container
Description Hub document

Redefinitions No

Dependencies |None

SCHEMA/reg/xhtml-framework-1.xsd| [p.49]
SCHEMA/xhtml-optional-1.xsd| [p.125]

Contents

-37-

3.3. Validity and Conformance Modularization of XHTML in XML Schema

3.3. Validity and Conformance

The purpose of any language definition, regardless of its basis on DTDs, XML Schema, or some
other representation, is the same: to determine if a specific document instance conforms to the
language definition. In XML Schema terms, this means that documents can be validated using
the schema. The validation process attempts to determine the document’s structural integrity,
and the behavior of any XML processor in cases of validation errors is well-defined in the XML
1.0 specification. Therefore the real test of any modularization system for XHTML is whether the
resulting schema can be used to determine if any particular XHTML document instance is valid.

This document does not attempt to define conformance beyond the ability to validate the
structural integrity of documents. In particular it does not attempt to describe any level of
user-agent conformance, as this is not a modularization issue, but an issue for the specification
of the language semantics. Conformance to the XML Schema-based modularization framework
is strictly defined in terms of document validation. Further levels of conformance are described in
the published language specifications themselves.

3.3.1. XHTML Conformance

Schemas defining language variants within the XHTML namespace may be considered to be
conformant if they:

e Conform to the existing published language definition for that language variant

® Include all of the modules that are required in this document

® Retain the semantic components of the required elements intact including but not limited to
elements, attributes, and attribute values

e Properly identify external elements and attributes with the appropriate XML namespace

® Any combination of the XHTML Schema modules provided that complies with these rules
can be considered to be a conformant language variant in the XHTML namespace.

3.3.2. Schema Modularization Conformance

An XML Schema or set of Schema modules can be considered to be conformant to this schema
modularization framework if they follow the schema modularization framework conventions
described in Section 2.2.

3.3.3. The XHTML Family of Documents

The XHTML Family of Documents is defined as the set of language variants that use the XHTML
namespace as the namespace of the root element, which must be <html>.

In order to be a conformant member of the XHTML Family of Documents, an XML Schema or
set of schema modules must:

-38-

Modularization of XHTML in XML Schema 3.3.3. The XHTML Family of Documents

® Define <html> as its root element, and use the XHTML namespace as the root element’s

namespace.
® Conform to the XHTML Conformance and Schema Modularization Conformance sections of

this document.

This class of document definitions includes both XHTML language variants and compound
document types using external modules.

-39-

3.3.3. The XHTML Family of Documents Modularization of XHTML in XML Schema

-40 -

Modularization of XHTML in XML Schema A. References

A. References

This appendix is normative.

A.l. Normative References

[APPROACH]
[An Approach to the Modularization of XHTML using XML Schemal R. Jelliffe, Academia
Sinica Computing Center, 19 December 2000.
Available at: http://www.ascc.net/~ricko/xhtml.htm

[Booch94]
Object-Oriented Analysis and Design, G. Booch, 1994

[CATALOG]
[Entity Management: OASIS Technical Resolution 9401:1997 (Amendment 2 to TR 9401)| P.
Grosso, Chair, Entity Management Subcommittee, SGML Open, 10 September 1997.
Available at: http://www.oasis-open.org/html/a401.htm

[RFC2045]
[Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message |
N. Freed et al., November 1996.
Available at: http://www.rfc-editor.org/rfc/rfc2045.txt
Note that this RFC obsoletes RFC1521, RFC1522, and RFC1590.

[RFC3066]
[Tags for the Identification of Languages| H. Alvestrand, January 2001.
Available at: http://www.rfc-editor.org/rfc/rfc3066.txt

[RUBY]
[Ruby Annotation| M. Sawicki et al., 31 May 2001
Available at: http://www.w3.0rg/TR/2001/REC-ruby-20010531

[URI]
[Uniform Resource Identifiers (URI): Generic Syntax}, T. Berners-Lee et al., IETF, August
1998.
Available at: http://www.rfc-editor.org/rfc/rfc2396.txt.

[XHTML1]
[XHTML 1.0: The Extensible HyperText Markup Language (Second Edition), W3C
Recommendation, S. Pemberton, et al., 26 January 2000, revised 1 August 2002.
Available at: http://www.w3.0rg/TR/2002/REC-xhtmI|1-20020801

[XHTML11]
(XHTML 1.1 - Module-based XHTML, W3C Recommendation, M. Altheim, et al., 31 May
2001.
Available at: http://www.w3.0rg/TR/2001/REC-xhtmI11-20010531

[XHTMLBASIC]
W3C Recommendation, M. Baker, et al., 19 December 2000.
Available at: http://www.w3.0rg/TR/2000/REC-xhtml-basic-20001219

[XHTMLMIME]
[The application/xhtml+xml Media Type} M. Baker, P. Stark, IETF, January 2002.
Available at: http://www.rfc-editor.org/rfc/rfc3236.txt

-41 -

http://www.ascc.net/~ricko/xhtml.htm
http://www.oasis-open.org/html/a401.htm
http://www.rfc-editor.org/rfc/rfc2045.txt
http://www.rfc-editor.org/rfc/rfc2045.txt
http://www.rfc-editor.org/rfc/rfc3066.txt
http://www.w3.org/TR/2001/REC-ruby-20010531
http://www.rfc-editor.org/rfc/rfc2396.txt
http://www.w3.org/TR/2002/REC-xhtml1-20020801
http://www.w3.org/TR/2001/REC-xhtml11-20010531
http://www.w3.org/TR/2000/REC-xhtml-basic-20001219
http://www.rfc-editor.org/rfc/rfc3236.txt

A.1. Normative References Modularization of XHTML in XML Schema

[XHTMLMOD]
[Modularization of XHTML], W3C Recommendation, M. Altheim, et al., 10 April 2001
Available at: http://www.w3.0rg/TR/2001/REC-xhtml-modularization-20010410
[XML]
[Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation, T. Bray
et al., 6 October 2000.
Available at: http://www.w3.0rg/TR/2000/REC-xmI-20001006
[XMLNAMES]
[Namespaces in XML}, W3C Recommendation, T. Bray et al., 14 January 1999.
Available at: http://www.w3.0rg/TR/1999/REC-xml-names-19990114
[XMLSCHEMA]
(XML Schema Part 1: Structures, W3C Recommendation, H. S. Thompson, et al., 2 May
2001
Available at: http://www.w3.0rg/TR/2001/REC-xmlschema-1-20010502
[XMLSCHEMA_COMPOSITION]
XML Schema Part 1: Structures, "4.2 Layer 2: Schema Documents, Namespaces and |
[Composition], W3C Recommendation, H. S. Thompson, et al., 2 May 2001
Available at: http://www.w3.0rg/TR/2001/REC-xmlschema-1-20010502/#layer2

-42 -

http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/#layer2
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/#layer2

Modularization of XHTML in XML Schema B. Changes

B. Changes

This appendix is informative.

B.1. Changes to Abstract Modules

e Moved Ruby to Optional

B.2. Changes from DTD Module Implementations

Reorganized legacy with 2 new modules

Changed Ruby content model

Moved nameident into optional

Modified meaning of ".type" objects

Added file naming, file structure, module structure, and documentation conventions.
Changed some attribute value definitions to more restricted types
Added new "req" module

Removed default = "get" from form.action

Removed spurious form.button.type attribute

Removed default value rect from csismap module

Removed default value "data" from param.valuetype

-43-

B.2. Changes from DTD Module Implementations Modularization of XHTML in XML Schema

-44 -

Modularization of XHTML in XML Schema

C. Acknowledgements

This appendix is informative.

The following people provided support and assistance:

Peter Stark

Steven Pemberton

Rick Jelliffe

Josef Dietl

Sebastian Schnitzenbaumer
Malte Wedel

Jack Herer

- 45 -

C.