
XML Events

An Events Syntax for XML

W3C Working Draft 12 August 2002
This version:

http://www.w3.org/TR/2002/WD-xml-events-20020812
Latest version:

http://www.w3.org/TR/xml-events
Previous version:

http://www.w3.org/TR/2001/WD-xml-events-20011026
Diff-marked version:

xml-events-diff.html
Editors:

Shane McCarron, Applied Testing and Technology, Inc.
Steven Pemberton, CWI
T. V. Raman, IBM

This document is also available in these non-normative formats: PostScript version, PDF
version, ZIP archive, and Gzip’d TAR archive.

Copyright ©2002 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark,
document use and software licensing rules apply.

Abstract
The XML Events module defined in this specification provides XML languages with the ability to
uniformly integrate event listeners and associated event handlers with Document Object Model
(DOM) Level 2 event interfaces [DOM2EVENTS] [p.23] . The result is to provide an
interoperable way of associating behaviors with document-level markup.

Status of This Document
This section describes the status of this document at the time of its publication. Other
documents may supersede this document. The latest status of this document series is
maintained at the W3C.

- 1 -

 XML EventsXML Events

http://www.w3.org/
http://www.w3.org/TR/2002/WD-xml-events-20020812
http://www.w3.org/TR/xml-events
http://www.w3.org/TR/2001/WD-xml-events-20011026
http://www.aptest.com/
http://www.cwi.nl/
http://www.ibm.com/
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-software-19980720

This is an updated Working Draft of the XML Events specification. It has been modified from the
previous public draft as a result of last call period comments. The Working Group expects that
this document will soon move into Candidate Recommendation status.

Please report errors in this document to www-html-editor@w3.org (archive).

This document has been produced as part of the W3C HTML Activity for review by W3C
Members and other interested parties. It is a draft document and may be updated, replaced or
obsoleted by other documents at any time. It is inappropriate to use W3C Working Drafts as
reference material or to cite them as other than "work in progress". This is work in progress and
does not imply endorsement by, or the consensus of, the W3C Membership.

At the time of publication, the Working Group believed there were zero patent disclosures
relevant to this specification. A current list of patent disclosures relevant to this specification may
be found on the Working Group’s patent disclosure page.

A list of current W3C Recommendations and other technical documents can be found at
http://www.w3.org/TR.

Changes since the last version
This document has changed as a result of last-call comments from various commentators.

Reviewers can see a diff-marked version to understand the details of the changes.

Contents
................... 51. Introduction
................ 72. The XML Events Module
............... 72.1. The listener Element
............ 92.1.1. Examples of listener usage
....... 102.2. Attaching Attributes Directly to the Observer Element
... 102.2.1. Examples of Using Attributes Attached to an Observer Element
........ 102.3. Attaching Attributes Directly to the Handler Element
.... 112.3.1. Examples of Using Attributes Attached to a Handler Element
....... 122.4. Summary of Observer and Handler Attribute Defaulting
................ 122.5. Event Handlers
............. 132.6. The Basic XML Events Profile
................. 133. Naming Event Types
................. 15A. DTD Implementation
.............. 15A.1. Qualified Names Module
............... 17A.2. XML Events Module
................ 19B. Schema Implementation
................ 19B.1. Attributes Module
............... 20B.2. XML Events Module

- 2 -

XML Events Contents

http://www.w3.org/Consortium/Process-20010719/tr.html#RecsCR
http://lists.w3.org/Archives/Public/www-html-editor/
http://www.w3.org/MarkUp/Activity
http://www.w3.org/2002/07/HTML-IPR
http://www.w3.org/TR

................... 23C. References

............... 23C.1. Normative References

................ 23C.2. Other References

................. 25D. Acknowledgments

- 3 -

 ContentsXML Events

- 4 -

XML Events Contents

1. Introduction
This section is informative.

An event is the representation of some asynchronous occurrence (such as a mouse click on the
presentation of the element, or an arithmetical error in the value of an attribute of the element, or
any of unthinkably many other possibilities) that gets associated with an element (targeted at it)
in an XML document.

In the DOM model of events [DOM2EVENTS] [p.23] , the general behavior is that when an event
occurs it is dispatched by passing it down the document tree in a phase called capture to the
element where the event occurred (called its target), where it then may be passed back up the
tree again in the phase called bubbling. In general an event can be responded to at any element
in the path (an observer) in either phase by causing an action, and/or by stopping the event,
and/or by cancelling the default action for the event at the place it is responded to. The following
diagram illustrates this:

Event flow in DOM2: an event targeted at an element (marked ’target’) in the tree passes down
the tree from the root to the target in the phase called ’capture’. If the event type allows it, the
event then travels back up the tree by the same route in a phase called ’bubbling’. Any node in
the route, including the root node and the target, may be an ’observer’: that is to say, a handler
may be attached to it that is activated when the event passes through in either phase. A handler
can only listen for one phase. To listen for both you have to attach two handlers.

- 5 -

1. IntroductionXML Events

An action is some way of responding to an event; a handler is some specification for such an
action, for instance using scripting or some other method. A listener is a binding of such a
handler to an event targeting some element in a document.

HTML [HTML4 [p.23]] binds events to an element by encoding the event name in an attribute
name, such that the value of the attribute is the action for that event at that element. This
method has two main disadvantages: firstly it hardwires the events into the language, so that to
add a new event, you have to make a change to the language, and secondly it forces you to mix
the content of the document with the specifications of the scripting and event handling, rather
than allowing you to separate them out. SVG [SVG [p.23]] uses a similar method.

The process of defining a new version of HTML identified the need for an extensible event
specification method. The design requirements were the following:

Syntactically expose the DOM event model to an XML document [XML]. [p.23]
Provide for new event types without requiring modification to the DOM or the DTD.
Allow for integration with other XML languages.

The DOM specifies an event model that provides the following features:

A generic event system,
Means for registering event listeners and handlers,
Means for routing events through a tree structure,
Access to context information for each event, and
A definition of event flow, as sketched above.

Element listener and its attributes defined in this specification is the method of binding a
DOM level 2 event at an element to an event handler and encapsulates various aspects of the
DOM level 2 event interface, thereby providing markup-level specification of the actions to be
taken during the various phases of event propagation.

This document neither specifies particular events, nor mandates any particular methods of
specifying actions. These definitions are left to any markup language using the facilities
described here.

- 6 -

XML Events1. Introduction

2. The XML Events Module
This section is normative.

This specification defines a module called XML Events. The XML Events module uses the XML
namespace [NAME] [p.23] identifier http://www.w3.org/2001/xml-events.

Examples in this document that use the namespace prefix "ev" all assume an xmlns declaration
xmlns:ev="http://www.w3.org/2001/xml-events" somewhere suitable in the
document involved. All examples are informative.

The remainder of this section describes the elements and attributes in this module, the
semantics, and provides an abstract module definition as required in [XHTMLMOD] [p.23] .

The XML Events Module supports the following element and attributes:

Element Attributes Minimal Content Model

listener [p.7]

event (NMTOKEN),
observer (IDREF),
target (IDREF),
handler (URI),
phase ("capture" | "default"*),
propagate ("stop" | "continue"*),
defaultAction ("cancel" | "perform"*),
id (ID)

EMPTY

Implementations: DTD [p.17] , XML Schema [p.20]

2.1. The listener Element
Element listener supports a subset of the DOM’s EventListener interface. It is used to
declare event listeners and register them with specific nodes in the DOM, and has the following
attributes:

event
The required event attribute specifies the event type for which the listener is being
registered. As specified by [DOM2EVENTS [p.23]], the value of the attribute should be an
XML Name [XML [p.23]].

observer
The optional observer attribute specifies the id of the element with which the event
listener is to be registered. If this attribute is not present, the observer is the element that
the event attribute is on (see later under "Attaching Attributes Directly to the Observer
Element [p.10] "), or the parent of that element (see later under "Attaching Attributes
Directly to the Handler Element [p.10] ").

- 7 -

2. The XML Events ModuleXML Events

http://www.w3.org/TR/xhtml-modularization/abstraction.html#dt_NMTOKEN
http://www.w3.org/TR/xhtml-modularization/abstraction.html#dt_IDREF
http://www.w3.org/TR/xhtml-modularization/abstraction.html#dt_IDREF
http://www.w3.org/TR/xhtml-modularization/abstraction.html#dt_URI
http://www.w3.org/TR/xhtml-modularization/abstraction.html#dt_ID

target
The optional target attribute specifies the id of the target element of the event (i.e., the
node that caused the event). If this attribute is present, only events that match both the
event and target attributes will be processed by the associated event handler. Clearly
because of the way events propagate, the target element should be a descendent node of
the observer element, or the observer element itself.

Use of this attribute requires care; for instance, if you specify

<listener event="click" observer="para1"
 target="link1" handler="#clicker"/>

where ’para1’ is some ancestor of the following node

The draft document

and the user happens to click on the word "draft", the element, and not the <a>, will
be the target, and so the handler will not be activated; to catch all mouse clicks on the <a>
element and its children, use observer="link1", and no target attribute.

handler
The optional handler attribute specifies the URI-reference of an element that defines the
action that should be performed if the event reaches the observer. (This specification does
not mandate what form that element should take: see further the section "Event Handlers
[p.12] "). If this attribute is not present, the handler is the element that the event attribute is
on (see later under "Attaching Attributes Directly to the Handler Element [p.10] ").

phase
The optional phase attribute specifies when (during which DOM 2 event propagation
phase) the listener will be activated by the desired event.
capture

Listener is activated during capturing phase.
default

Listener is activated during bubbling or target phase.

The default behavior is phase="default".

Note that not all events bubble, in which case with phase="default" you can only handle the
event by making the event’s target the observer.

propagate
The optional propagate attribute specifies whether after processing all listeners at the
current node, the event is allowed to continue on its path (either in the capture or the bubble
phase).
stop

event propagation stops
continue

event propagation continues (unless stopped by other means, such as scripting, or by
another listener).

- 8 -

XML Events2.1. The listener Element

The default behavior is propagate="continue".

defaultAction
The optional defaultAction attribute specifies whether after processing of all listeners for
the event at the current element, the default action for the event (if any) should be
performed or not. For instance, the default action for a mouse click on an <a> element in
XHTML is to traverse the link. Note that this is only useful when the observer is the <a>
element, and not some parent element.
cancel

if the event type is cancellable, the default action is cancelled
perform

the default action is performed (unless cancelled by other means, such as scripting, or
by another listener).

The default value is defaultAction="perform".

Note that not all events are cancellable, in which case this attribute is ignored.

id
The optional id attribute is a document-unique identifier. The value of this identifier is often
used to manipulate the element through a DOM interface.

Note that observer = "<element-id>" and event = "<event-type>" are similar to the
begin = "<element-id>.<event-type>" attribute in SMIL EventTiming [SMIL20] [p.23] .

2.1.1. Examples of listener usage

1. This example attaches the handler in the element at "#doit" that will get activated when
the event called activate occurs on the element with id="button1", or any of its
children. The activation will occur during bubbling, or if the event happened on the observer
element itself, when the event reaches the element (phase target).

<listener event="activate" observer="button1" handler="#doit"/>

2. This attaches the handler at #overflow-handler that will get activated when the event
overflow occurs on the element with id="expr1" and bubbles up to the element with
id="prog1".

<listener event="overflow" observer="prog1" target="expr1"
 handler="#overflow-handler"/>

3. This attaches the handler at #popup that will get activated whenever an activate event
occurs at the element with id="embargo" or any of its children. Since it will be activated
during the capture phase, and propagation is stopped, this will have the effect (regardless of
what the handler does) of preventing any child elements of the embargo element seeing
any activate events.

- 9 -

2.1.1. Examples of listener usageXML Events

<listener event="activate" observer="embargo" handler="#popup"
 phase="capture" propagate="stop"/>

4. This attaches a handler from another document.

<listener event="activate" observer="image1"
 handler="/handlers/events.xml#activate"/>

2.2. Attaching Attributes Directly to the Observer Element
All the attributes from the listener element with the exception of id may be used as global
attributes, as defined in Namespaces in XML [NAME [p.23]], to attach the attributes to other
elements.

Note that this means that the <listener> element is strictly speaking redundant, since the
following

<anyelement ev:event="click" ev:observer="button1" ev:handler="#clicker"/>

would have the same effect as

<ev:listener event="click" observer="button1" handler="#clicker"/>

Nonetheless, for utility the <listener> element has been retained.

If the observer attribute is omitted (but not the handler attribute), then the element that the
other attributes are attached to is the observer element.

2.2.1. Examples of Using Attributes Attached to an Observer Element

1. This first example will attach the handler identified by "#popper" to the <a> element, and
cancel the default action for the event.

<a href="doc.html" ev:event="activate" ev:handler="#popper"
 ev:defaultAction="cancel">The document

2. This will attach the handler at #handle-overflow for the event overflow to the current
element.

<div ev:event="overflow" ev:handler="#handle-overflow"> ... </div>

2.3. Attaching Attributes Directly to the Handler Element
If, when attaching the global attributes to an element, the handler attribute is omitted then the
element that the other attributes are attached to is the handler element.

Note that, since the observer and target attributes are IDREFs, in this case the handler and
observer/target elements must be in the same document (while in other cases, since the
handler attribute is a URI, the handler element may be in another document).

- 10 -

XML Events2.2. Attaching Attributes Directly to the Observer Element

If the observer attribute is also omitted, then the parent of the handler element is the observer
element.

2.3.1. Examples of Using Attributes Attached to a Handler Element

1. In this case the element is the handler for the submit event on the element with
id="form1".

<script type="application/x-javascript"
 ev:event="submit" ev:observer="form1">
 return docheck(event);
</script>

2. In this case the <action> element is the handler for event q-submit, and the observer is
the questionnaire element.

<questionnaire submissionURL="/q/tally">
 <action ev:event="q-submit">
 ...
 </action>
 ...
 </questionnaire>

3. The <script> element is the handler for event click; the element is the observer.

 <script ev:event="activate" type="application/x-javascript">
 doactivate(event);
 </script>

4. The <onevent> element is the handler for event enterforward. The <card> element is
the observer.

<card>
 <onevent ev:event="enterforward">
 <go href="/url"/>
 </onevent>
 <p>
 Hello!
 </p>
</card>

5. The <catch> element is the handler for the nomatch event. The observer is the <field>
element.

<form id="launch_missiles">
 <field name="password">
 <prompt>What is the code word?</prompt>
 <grammar>
 <rule id="root" scope="public">rutabaga</rule>
 </grammar>
 <help>It is the name of an obscure vegetable.</help>
 <catch ev:event="nomatch">

- 11 -

2.3.1. Examples of Using Attributes Attached to a Handler ElementXML Events

 <prompt>Security violation!</prompt>
 <submit next="apprehend_felon" namelist="user_id"/>
 </catch>
 </field>
 <block>
 <goto next="#get_city"/>
 </block>
</form>

6. This example shows three handlers for different events. The observer for all three is the
<secret> element.

<secret ref="/login/password">
 <caption>Please enter your password</caption>
 <info ev:event="help">
 Mail help@example.com in case of problems
 </info>
 <info ev:event="hint">
 A pet’s name
 </info>
 <info ev:event="alert">
 This field is required
 </info>
</secret>

2.4. Summary of Observer and Handler Attribute Defaulting
The following table summarizes which elements play the role of observer or handler if the
relevant attribute is omitted.

The effect of omitted observer and handler attributes

Handler present Handler omitted

Observer present (As declared) Element is handler

Observer omitted Element is observer
Element is handler
Parent is observer

2.5. Event Handlers
This specification does not require an XML application that uses XML Events to use any
particular method for specifying handlers. However, the examples, particularly those in the
section on attaching the attributes directly to the handler, are intended to give examples of how
they could be specified.

It is however recognized that two methods are likely to occur often: scripting (such as XHTML’s
<script> element) and declarative markup using XML elements (such as WML’s <onevent>
element). A companion specification will provide markup to support these methods.

- 12 -

XML Events2.4. Summary of Observer and Handler Attribute Defaulting

2.6. The Basic XML Events Profile
The Basic XML Events Profile allows restrictions on the usage of the XML Events Module in
order to make processing easier on small devices.

The Basic Profile allows the following restrictions on the use of listener element and its
attributes, and on the use of the attributes from the listener element as global attributes.

1. External Event Handlers

The ability to process external event handlers is not required. When the ’handler’ attribute
on the listener element is used, or when the global ’handler’ attribute is used, the
handler specified in the value of that attribute should be within the current document.

For example, the following is allowed:

<listener event="click" target="#button1" handler="#clicker"/>

while the following is not required to be processed:

<listener event="click" target="#button1" handler="doc2.html#clicker"/>

2. Ordering of Event Bindings

The binding of an event handler to an observer may be required to be lexically before the
end of the observer element. In other words, a <listener> binding to an observer may not
occur after the closing tag of the observer element, and an event handler carrying the
attributes to bind it to an observer may also not occur after the closing tag of the observer
element.

3. Naming Event Types
This section is informative.

This specification does not normatively specify how language designers should name events
(i.e., the values used in the event attribute).

To avoid clashes with names used by other applications, it is recommended to use a prefix
separated with a hyphen from the event name, for instance xforms-alert.

A number of event types are defined in DOM2 [DOM2EVENTS] [p.23] , to which you should
refer for their names and semantics.

- 13 -

3. Naming Event TypesXML Events

- 14 -

XML Events3. Naming Event Types

A. DTD Implementation
This appendix is normative.

The DTD implementation of XML Events conforms to the requirements defined in [XHTMLMOD]
[p.23] . Consequently, it provides a Qualified Names sub-module, and a module file for the XML
Events module defined in this recommendation.

A.1. Qualified Names Module
Note that this module defines the Parameter Entity %xml-events-attrs.qname. This entity is
intended to be used in the attribute lists of elements in any host language that permits the use of
event attributes on elements in its own namespace. In this case the Host Language driver
should set a parameter entity XML-EVENTS.prefixed to INCLUDE and a parameter entity
XML-EVENTS.prefix to a value that is the prefix for the XML Events attributes.

<!-- ... -->
<!-- XML Events Qname Module .. -->
<!-- file: xml-events-qname-1.mod

 This is XML Events - the Events Module for XML,
 a definition of access to the DOM events model.

 Copyright 2000-2001 W3C (MIT, INRIA, Keio), All Rights Reserved.

 This DTD module is identified by the PUBLIC and SYSTEM identifiers:

 PUBLIC "-//W3C//ENTITIES XML Events Qnames 1.0//EN"
 SYSTEM "http://www.w3.org/TR/xml-events/DTD/xml-events-qname-1.mod"

 Revisions:
 (none)
 ... -->

<!-- XML Events Qname (Qualified Name) Module

 This module is contained in two parts, labeled Section ’A’ and ’B’:

 Section A declares parameter entities to support namespace-
 qualified names, namespace declarations, and name prefixing
 for XML Events and extensions.

 Section B declares parameter entities used to provide
 namespace-qualified names for all XML Events element types:

 %listener.qname; the xmlns-qualified name for <listener>
 ...

 XML Events extensions would create a module similar to this one.
 Included in the XML distribution is a template module
 (’template-qname-1.mod’) suitable for this purpose.
-->

- 15 -

A. DTD ImplementationXML Events

<!-- Section A: XML Events XML Namespace Framework :::::::::::::::::::: -->

<!-- 1. Declare a %XML-EVENTS.prefixed; conditional section keyword, used
 to activate namespace prefixing. The default value should
 inherit ’%NS.prefixed;’ from the DTD driver, so that unless
 overridden, the default behaviour follows the overall DTD
 prefixing scheme.
-->
<!ENTITY % NS.prefixed "IGNORE" >
<!ENTITY % XML-EVENTS.prefixed "%NS.prefixed;" >

<!-- 2. Declare a parameter entity (eg., %XML-EVENTS.xmlns;) containing
 the URI reference used to identify the XML Events namespace
-->
<!ENTITY % XML-EVENTS.xmlns "http://www.w3.org/2001/xml-events" >

<!-- 3. Declare parameter entities (eg., %XML.prefix;) containing
 the default namespace prefix string(s) to use when prefixing
 is enabled. This may be overridden in the DTD driver or the
 internal subset of an document instance. If no default prefix
 is desired, this may be declared as an empty string.

 NOTE: As specified in [XMLNAMES], the namespace prefix serves
 as a proxy for the URI reference, and is not in itself significant.
-->
<!ENTITY % XML-EVENTS.prefix "" >

<!-- 4. Declare parameter entities (eg., %XML-EVENTS.pfx;) containing the
 colonized prefix(es) (eg., ’%XML-EVENTS.prefix;:’) used when
 prefixing is active, an empty string when it is not.
-->
<![%XML-EVENTS.prefixed;[
<!ENTITY % XML-EVENTS.pfx "%XML-EVENTS.prefix;:" >
]]>
<!ENTITY % XML-EVENTS.pfx "" >

<!-- declare qualified name extensions here -->
<!ENTITY % xml-events-qname-extra.mod "" >
%xml-events-qname-extra.mod;

<!-- 5. The parameter entity %XML-EVENTS.xmlns.extra.attrib; may be
 redeclared to contain any non-XML Events namespace declaration
 attributes for namespaces embedded in XML. The default
 is an empty string. XLink should be included here if used
 in the DTD.
-->
<!ENTITY % XML-EVENTS.xmlns.extra.attrib "" >

<!-- Section B: XML Qualified Names ::::::::::::::::::::::::::::: -->

<!-- 6. This section declares parameter entities used to provide
 namespace-qualified names for all XML Events element types.
-->

<!ENTITY % xml-events.listener.qname "%XML-EVENTS.pfx;listener" >

- 16 -

XML EventsA.1. Qualified Names Module

<!-- The following defines a PE for use in the attribute sets of elements in
 other namespaces that want to incorporate the XML Event attributes. Note
 that in this case the XML-EVENTS.pfx should always be defined. -->

<!ENTITY % xml-events.attrs.qname
 "%XML-EVENTS.pfx;event NMTOKEN #IMPLIED
 %XML-EVENTS.pfx;observer IDREF #IMPLIED
 %XML-EVENTS.pfx;target IDREF #IMPLIED
 %XML-EVENTS.pfx;handler %URI.datatype; #IMPLIED
 %XML-EVENTS.pfx;phase (capture|default) #IMPLIED
 %XML-EVENTS.pfx;propagate (stop|continue) #IMPLIED
 %XML-EVENTS.pfx;defaultAction (cancel|perform) #IMPLIED"
 >

<!-- end of xml-events-qname-1.mod -->

A.2. XML Events Module
<!-- .. -->
<!-- XML Events Module .. -->
<!-- file: xml-events-1.mod

 This is XML Events - the Events Module for XML.
 a redefinition of access to the DOM events model.

 Copyright 2000-2001 W3C (MIT, INRIA, Keio), All Rights Reserved.

 This DTD module is identified by the PUBLIC and SYSTEM identifiers:

 PUBLIC "-//W3C//ENTITIES XML Events 1.0//EN"
 SYSTEM "http://www.w3.org/TR/xml-events/DTD/xml-events-1.mod"

 Revisions:
 (none)
 ... -->

<!-- XML Events defines the listener element and its attributes -->

<!ENTITY % xml-events.listener.content "EMPTY" >

<!ELEMENT %xml-events.listener.qname; %xml-events.listener.content;>
<!ATTLIST %xml-events.listener.qname;
 id ID #IMPLIED
 event NMTOKEN #REQUIRED
 observer IDREF #IMPLIED
 target IDREF #IMPLIED
 handler %anyURI.datatype; #IMPLIED
 phase (capture|default) #IMPLIED
 propagate (stop|continue) #IMPLIED
 defaultAction (cancel|perform) #IMPLIED
>

<!-- end of xml-events-1.mod -->

- 17 -

A.2. XML Events ModuleXML Events

- 18 -

XML EventsA.2. XML Events Module

B. Schema Implementation
This appendix is normative.

The SCHEMA implementation of XML Events conforms to the requirements defined in
[XHTMLSCHEMAMOD] [p.23] . It is divided into an attributes module and an element module for
the XML Events module defined in this recommendation.

B.1. Attributes Module
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 targetNamespace="http://www.w3.org/2001/xml-events"
 xmlns:ev="http://www.w3.org/2001/xml-events"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/XMLSchema
 http://www.w3.org/2001/XMLSchema.xsd"
 elementFormDefault="unqualified"
 version="1.1"
 blockDefault="#all"
 finalDefault="#all"
 attributeFormDefault="unqualified">
<!--

-->

 <xs:annotation>
 <xs:documentation>
 This is the XML Schema for XML Events global attributes
 $Id: xml-events-attribs-1.xsd,v 1.3 2002/08/12 14:52:13 ahby Exp $
 </xs:documentation>
 <xs:documentation source="xml-events-copyright-1.xsd"/>
 </xs:annotation>
<!--

-->
 <xs:annotation>
 <xs:documentation>
 XML Event Attributes

 These "global" event attributes are defined in "Attaching
 Attributes Directly to the Observer Element" of the XML
 Events specification.
 </xs:documentation>
 </xs:annotation>
<!--

-->
 <xs:attribute name="event" type="xs:NMTOKEN"/>
 <xs:attribute name="observer" type="xs:IDREF"/>
 <xs:attribute name="target" type="xs:IDREF"/>
 <xs:attribute name="handler" type="xs:anyURI"/>
 <xs:attribute name="phase" default="default">

- 19 -

B. Schema ImplementationXML Events

 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="capture"/>
 <xs:enumeration value="default"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="propagate" default="continue">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="stop"/>
 <xs:enumeration value="continue"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="defaultAction" default="perform">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="cancel"/>
 <xs:enumeration value="perform"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
<!--

-->
 <xs:attributeGroup name="XmlEvents.attlist">
 <xs:attribute ref="ev:event"/>
 <xs:attribute ref="ev:observer"/>
 <xs:attribute ref="ev:target"/>
 <xs:attribute ref="ev:handler"/>
 <xs:attribute ref="ev:phase"/>
 <xs:attribute ref="ev:propagate"/>
 <xs:attribute ref="ev:defaultAction"/>
 </xs:attributeGroup>

</xs:schema>

B.2. XML Events Module
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 targetNamespace="http://www.w3.org/2001/xml-events"
 xmlns="http://www.w3.org/2001/xml-events"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/XMLSchema
 http://www.w3.org/2001/XMLSchema.xsd"
 elementFormDefault="unqualified"
 version="1.1"
 blockDefault="#all"
 finalDefault="#all"
 attributeFormDefault="unqualified">
<!--

-->

- 20 -

XML EventsB.2. XML Events Module

 <xs:annotation>
 <xs:documentation>
 This is the XML Schema XML Events

 $Id: xml-events-1.xsd,v 1.3 2002/08/12 14:52:13 ahby Exp $
 </xs:documentation>
 <xs:documentation source="xml-events-copyright-1.xsd"/>
 </xs:annotation>
<!--

-->
 <xs:annotation>
 <xs:documentation>
 XML Events element listener

 This module defines the listener element for XML Events.
 This element can be used to define event listeners. This
 module relies upon the XmlEvents.attlist attribute group
 defined in xml-events-attribs-1.xsd.
 </xs:documentation>
 </xs:annotation>
<!--

-->
 <xs:attributeGroup name="listener.attlist">
 <xs:attribute name="event" use="required" type="xs:NMTOKEN"/>
 <xs:attribute name="observer" type="xs:IDREF"/>
 <xs:attribute name="target" type="xs:IDREF"/>
 <xs:attribute name="handler" type="xs:anyURI"/>
 <xs:attribute name="phase" default="default">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="capture"/>
 <xs:enumeration value="default"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="propagate" default="continue">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="stop"/>
 <xs:enumeration value="continue"/>
 </xs:restriction>
 </xs:simpleTyle>
 </xs:attribute>
 <xs:attribute name="defaultAction" default="perform">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="cancel"/>
 <xs:enumeration value="perform"/>
 </xs:restriction>
 </xs:simpleTyle>
 </xs:attribute>
 <xs:attribute name="id" type="xs:ID"/>
 </xs:attributeGroup>

- 21 -

B.2. XML Events ModuleXML Events

 <xs:complexType name="listener.type">
 <xs:attributeGroup ref="listener.attlist"/>
 </xs:complexType>

 <xs:element name="listener" type="listener.type"/>

</xs:schema>

- 22 -

XML EventsB.2. XML Events Module

C. References
This appendix is normative.

C.1. Normative References
[DOM2EVENTS]

"Document Object Model (DOM) Level 2 Events Specification", Tom Pixley (editor). W3C
Recommendation 13 November 2000. See http://www.w3.org/TR/DOM-Level-2-Events/.

[XML]
"Extensible Markup Language (XML) 1.0". W3C Recommendation 6 October 2000. See
http://www.w3.org/TR/2000/REC-xml-20001006

[NAME]
"Namespaces in XML", Bray T., et al., W3C Recommendation 14 January 1999. See
http://www.w3.org/TR/1999/REC-xml-names-19990114

[SCHEMA]
"XML Schema Part 2: Datatypes" , Paul V. Biron, et al., W3C Recommendation 2 May
2001. See http://www.w3.org/TR/xmlschema-2/.

C.2. Other References
[HTML4]

"HTML 4.01 Specification", Raggett D., et al., W3C Recommendation 24 December 1999.
See http://www.w3.org/TR/html4/.

[SMIL20]
"Synchronized Multimedia Integration Language (SMIL 2.0)". Ayars J., et al. W3C
Recommendation 7 August 2001. See http://www.w3.org/TR/2001/REC-smil20-20010807

[SVG]
"Scalable Vector Graphics (SVG) 1.0 Specification", Jon Ferraiolo (editor), W3C
Recommendation 4 September 2001. See http://www.w3.org/TR/SVG/

[XHTML]
"XHTML™ 1.0: The Extensible HyperText Markup Language". Pemberton S., et al. W3C
Recommendation 26 January 2000. See http://www.w3.org/TR/2000/REC-xhtml1-20000126

[XHTMLMOD]
"Modularization of XHTML™", Altheim M., et al. W3C Recommendation 10 April 2001. See
http://www.w3.org/TR/xhtml-modularization

[XHTMLSCHEMAMOD]
"Modularization of XHTML™ in XML Schema", D. Austin, S. McCarron, W3C Working Draft
19 December 2001. See http://www.w3.org/TR/xhtml-m12n-schema

- 23 -

C. ReferencesXML Events

http://www.w3.org/TR/DOM-Level-2-Events/
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/html4/
http://www.w3.org/TR/smil20/
http://www.w3.org/TR/SVG
http://www.w3.org/TR/2000/REC-xhtml1-20000126
http://www.w3.org/TR/xhtml-modularization
http://www.w3.org/TR/xhtml-m12n-schema

- 24 -

XML EventsC.2. Other References

D. Acknowledgments
This section is informative.

This document was originally edited by Ted Wugofski (Openwave).

Special acknowledgments to: Mark Baker (Sun Microsystems), Wayne Carr (Intel Corporation),
Warner ten Kate (Philips Electronics), Patrick Schmitz, and Peter Stark (Ericsson) for their
significant contributions to the evolution of this specification.

At the time of publication, the members of the W3C HTML Working Group were:

List will be inserted when this document becomes a Recommendation.

- 25 -

D. AcknowledgmentsXML Events

	 XML Events
	 An Events Syntax for XML
	 W3C Working Draft 12 August 2002
	 Abstract
	 Status of This Document
	 Changes since the last version

	 Contents
	1. Introduction
	2. The XML Events Module
	2.1. The listener Element
	2.1.1. Examples of listener usage

	2.2. Attaching Attributes Directly to the Observer Element
	2.2.1. Examples of Using Attributes Attached to an Observer Element

	2.3. Attaching Attributes Directly to the Handler Element
	2.3.1. Examples of Using Attributes Attached to a Handler Element

	2.4. Summary of Observer and Handler Attribute Defaulting
	2.5. Event Handlers
	2.6. The Basic XML Events Profile

	3. Naming Event Types
	A. DTD Implementation
	A.1. Qualified Names Module
	A.2. XML Events Module

	B. Schema Implementation
	B.1. Attributes Module
	B.2. XML Events Module

	C. References
	C.1. Normative References
	C.2. Other References

	D. Acknowledgments

